• Menu
  • Tools
  • Home
  • NEWS
  • BOOKS
  • NOTES
  • Conversion
  • Forum
  • Dictionary
  • EMI Calculator
  • Date Converter
  • Forex Exchange
  • Preeti to Unicode
  • Unicode to Preeti
  • Home
  • NEWS
    • Economic News
    • Education News
    • Political News
    • Social News
    • Sports News
    • Viral News
  • BOOKS
    • SCHOOL LEVEL BOOKS
    • 10+2 or INTERMEDIATE BOOKS
    • GRADUATION LEVEL BOOKS
  • Dictionary
    • Accounting Dictionary
    • English Hindi Dictionary
    • Hindi English Dictionary
  • NOTES
  • Conversion
    • EMI Calculator
    • Date Converter
    • Forex Exchange
    • Preeti to Unicode
    • Unicode to Preeti
  • Forum




Home /  NEB Syllabus and Model Question Grade 12
  • 9831 Views
  • Estimated reading time : 117 Minutes
  • Physics | NEB Syllabus and Model Question | Grade 12

  • NEB Model Question
  • Published on: August 12, 2021

  •  

    About NEB

    National Examinations Board-NEB (formerly Higher Secondary Education Board-HSEB) is the only one education board of Nepal Government.

    The Board has a separate seal for its own work implementation purpose.

    The examination related tasks of Grade 10 (Secondary Education Examinations (SEE) and class 11 and 12 (School Leaving Certificate Examination (SLCE) have now been affiliated to the jurisdiction of NEB as integrated components.

    The examinations of class 10 will be brought into operation in the regional/provincial level.

     

    Compulsory Subjects Grade 12

    Nepali [Nep. 002]

    English [Eng. 004]

    Social Studies and Life Skills Education [Sol. 006]

     

    Optional Subjects Group 1, Grade 12

    Physics [Phy. 102]

    Accounting [Acc. 104]

    Rural Development [Rud. 106]

    Nepalese Legal System [Nls. 110]

    Health and Physical Education [Hpe. 112]

    Sports Science [Sps. 114]

    Instructional Pedagogy and Evaluation [Ipe. 118]

    Psychology [Psy. 120]

    History [His. 122]

    Gender Studies [Ges. 124]

    Hospitality Management [Hom.126]

    Agronomy [Agr. 128]

    Naturopathy [Nat. 130]

    Human Value Education [Hve. 132]

    Sculpture [Scu. 134]

     

    Optional Subjects Group 2, Grade 12

    Biology [bio. 202]

    Education and Development [Ed. 204]

    Geography [Geo. 206]

    Procedural Law [Prl. 210]

    Sociology [Soc. 212]

    Ayurveda [Ayu. 214]

    Business Studies [Bus. 216]

    Linguistics [Lin. 218]

    Political Science [Pol. 220]

    Philosophy [Phi. 222]

    Population Studies [Pos. 224]

    Horticulture (Fruits, Vegetable, Floriculture, and Mushroom farming) [Hor.226]

    Food and Nutrition [Fon. 228]

    Dance [Dan. 230]

    Computer Science [Com. 232]

     

     

    Optional Subjects Group 3, Grade 12

    Chemistry [Che. 302]

    Economics [Eco.304]

    Tourism and Mountaineering Studies [Tms. 306]

    Marketing [Mar. 308]

    Gerontology and Caretaking Education [Get. 310]

    Yog [Yog. 312]

    Vocal / Instrumental [Voc. 314]

    Sweing and Knitting [Sek. 316]

    Criminal Law and Justice [Ccl. 320]

    Culinary Arts [Cua. 322]

    Culture [Cul. 324]

    Fashion Designing [Fad. 326]

    Film and Documentary [Fid. 328]

    Animal Husbandry, Poultry, and Fisheries [Apf. 330]

    Nepali [Nep. 332]

    English [Eng. 334]

    Maithali [Mai. 336]

    Newari [New. 338]

    Hindi [Hin. 340]

    Chinese [Chi. 342]

    German [Jer. 344]

    Japanese [Jap. 346]

    Korean [Kor. 348]

    Urdu [Urd. 352]

    French [Fre. 354]

    Hebrew [Heb. 356]

    Arabic [Are. 358]

    Sanskrit [San. 360]

     

    Optional Subjects Group 4, Grade 12

    Mathematics {Mat. 402]

    Applied Mathematics [Ama. 404]

    Business Mathematics [Bmt. 406]

    Human Rights [Hur. 408]

    Library and Information Science [Lis. 410]

    Home Science [Hos. 412]

    Environment Science [Ens. 414]

    General Law [Gel. 416]

    Finance [Fin. 418]

    Co-operative Management [Com. 420]

    Buddhist Studies [Bud. 422]

    Applied Arts [Apa. 424]

    Singing [Sig. 426]

    Painting [Pai. 428]

    Sericulture and Bee Keeping [Sbk. 430]

    Beautician and Hair Dressing [Beh. 432]

    Medicinal Herbals [Meh. 4334]

    Plumbing and Wiring [Plw. 436]

    Internal Decoration [Ind. 438]

    Hotel Management [Hom. 4340]

    Mass Communication [Mac. 442]

     

    Physics Syllabus, Grade 12

    Physics

    Physics Grades: 12

    Subject code: Phy. 102

    Credit hours: 5

    Working hours: 160

    1. Introduction

    This curriculum presumes that the students joining grade 11 and 12 science stream come with diverse aspirations, some may continue to higher level studies in specific areas of science, others may join technical and vocational areas or even other streams. The curriculum is designed to provide students with general understanding of the fundamental scientific laws and principles that govern the scientific phenomena in the world. It focuses to develop scientific knowledge, skill competences and attitudes required at secondary level (grade 11-12) irrespective of what they do beyond this level, as envisioned by national goals. Understanding of scientific concepts and their application, in day to day context as well as the process of obtaining new knowledge through holistic approach of learning in the spirit of national qualification framework is emphasized in the curriculum.

     

    In particular, this curriculum aims to provide sufficient knowledge and understanding of science for all learners to become confident citizens in the technological world. It helps the students to recognize the usefulness and limitations of laws and principles of physics and use them in solving problems encountered in their daily lives along a sound foundation for students who wish to study physics or related professional or vocational courses in higher education. It also helps to develop science related attitudes such as a concern for safety and efficiency, concern for accuracy and precision, objectivity, a spirit of enquiry, inventiveness, appreciation of ethno-science, and willingness to use technology for effective communication. It also promotes awareness of the principles and laws of science that are often the result of cumulative efforts and their studies and applications are subject to economic and technological limitations and social, cultural and ethical perceptions/acceptance.

     

    The curriculum prepared in accordance with National Curriculum Framework is structured for two academic years in such a way that it incorporates the level-wise competencies, grade-wise leaning outcomes, scope and sequence of contents, suggested practical/project activities, learning facilitation process and assessment strategies so as to enhance the learning on the subject systematically.

     

    2. Level-wise competencies

    In completion of this course, students are expected to demonstrate the following competencies:

    1. relate the phenomena and processes of the world around them to the knowledge and understanding of physical laws, principles and theories and describe them using appropriate scientific vocabulary, terminology and conventions,

    2. use scientific instruments, apparatus and methods to collect, evaluate and communicate information accurately and precisely,

    3. design simple experiment to develop relations among physical quantities,

    4. carryout simple scientific research on issues related to physics,

    5. construct simple models to illustrate physical concepts,

    6. use the knowledge of physics to promote care for the environment, indigenous knowledge, social values and ethics.

     

    3. Grade wise learning Outcomes

    Content Area: Mechanics

    1. Rotational dynamics

    1.1 Recall equations of angular motion and compare them with equations of linear motion

    1.2 Derive the expression for rotational kinetic energy

    1.3 Describe the term moment of inertia and radius of gyration

    1.4 Find the moment of inertia of thin uniform rod rotating about its center and its one end

    1.5 Establish the relation between torque and angular acceleration of a rigid body

    1.6 Describe the work and power in rotational motion with expression

    1.7 Define angular momentum and prove the principle of conservation of angular momentum

    1.8 Solve numerical problems and conceptual questions regarding the rotational dynamics

     

    2. Periodic motion

    2.1 Define simple harmonic motion and state its equation.

    2.2 Derive the expressions for energy in simple harmonic motion

    2.3 Derive the expression for period for vertical oscillation of a mass suspended from coiled spring

    2.4 Describe angular simple harmonic motion and find its period

    2.5 Derive expression for period of simple pendulum

    2.6 Explain the damped oscillation

    2.7 Describe forced oscillation and resonance with suitable examples

    2.8 Solve the numerical problems and conceptual questions regarding the periodic motion

     

     

    3. Fluid statics

    3.1 State and explain Archimedes principle and Pascal’s law

    3.2 Define up-thrust, pressure in fluid, buoyancy, center of buoyancy and meta center

    3.3 State and use the law of floatation,

    3.4 Describe surface tension and explain its principle

    3.5 Establish the relation between surface energy and surface tension

    3.6 Define angle of contact and capillarity with examples

    3.7 State the Newton’s Formula for viscosity of a liquid and defines coefficient of viscosity

    3.8 Differentiate between laminar and turbulent flow & describe Reynolds number 3.9 Recall and use the Poiseuille’s formula

    3.10 State Stoke’s law and use it to determine the coefficient of viscosity of given liquid

    3.11 Explain equation of continuity and its application

    3.12 Recall the Bernoulli’s equation and explain its uses

    3.13 Solve the numerical problems and conceptual questions regarding the fluid statics

     

    Content Area: Heat and Thermodynamics

    4. First Law of Thermodynamics

    4.1 Clarify the concept of thermodynamic system.

    4.2 Explain the meaning of work done by the system and work done on the system, and describe how work done by gas during expansion can be calculated from indicator (P – V) diagram.

    4.3 Explain the concept of latent heat and internal energy.

    4.4 State and explain first law of thermodynamics – increase of internal energy (dU) = heat into the system (dQ) + work done on the system (PdV) realizing its limitations and necessity of second law of thermodynamics. 4.5 Define and explain two specific heat capacities of gas appreciating the relation Cp – Cv = R and cp – cv = r.

    4.6 Explain various thermodynamic process (isothermal, isobaric, isochoric and adiabatic) with good concept of their P – V diagram.

    4.7 Derive adiabatic equation PVg = constant.

    4.8 Derive expression for work done during isothermal and adiabatic process.

    4.9 Give concept of reversible and irreversible process with examples.

    4.10 Solve mathematical problems related to first law of thermodynamics and thermodynamic process.

     

    5. Second Law of Thermodynamics

    5.1 State and explain second law of thermodynamics (Kelvin’s and Clausius’s statement).

    5.2 Compare second and first law of thermodynamics considering indication of direction of flow of heat.

    5.3 Explain heat engine as a device to convert heat energy into mechanical energy appreciating that its efficiency is less than 100%.

    5.4 Discuss Carnot’s cycle with the concept of P – V diagram and calculate the work done of each step and corresponding efficiency.

    5.5 Describe internal combustion engines, Otto engine and diesel engine with the help of P – V diagram to compare their efficiencies.

    5.6 Explain refrigerator as heat engine working in reverse direction

    5.7 Introduce entropy as a measure of disorder appreciating its roles in thermodynamic process.

    5.8 Solve mathematical problems related to heat engine.

     

     

    Content Area: Wave and Optics

    6. Wave motion

    6.1 Define and understand progressive wave

    6.2 Write progressive wave in mathematical form

    6.3 Discuss the condition under which stationary waves can be formed

    6.4 Write stationary wave in mathematical form

    6.5 Calculate frequency, amplitude, velocity, time period, etc of progressive wave

    6.6 Find expression for stationary wave using two progressive waves

     

    7. Mechanical waves

    7.1 Calculate Speed of wave motion

    7.2 Understand and write expression for the Velocity of sound in solid and liquid

    7.3 Describe Velocity of sound in gas

    7.4 Describe Laplace correction

    7.5 Formulate the effect of temperature, pressure, humidity on velocity of sound and their physical meaning

    7.6 Solve numerical problems related to velocity of sound in the given medium and condition

     

    8. Wave in pipes and strings

    8.1 Understand the formation of stationery waves in closed and open pipes

    8.2 Define and understand harmonics and overtones

    8.3 Discuss harmonics and overtones in closed and open organ pipes

    8.4 Understand end correction in pipes

    8.5 State and use the formula for velocity of transverse waves along a stretched string

    8.6 Understand Vibration of string and overtones

    8.7 Know the laws of vibration of fixed string.

     

    9. Acoustic phenomena:

    9.1 Describe sound waves as pressure waves in a medium

    9.2 Characterize the sound using its intensity, loudness, quality and pitch

    9.3 Discuss Doppler’s effect

    9.4 Apply Doppler effect in realistic case where source and observers are in relative motion.

     

    10. Nature and propagation of Light

    10.1 Use Huygen’s principle to explain reflection and refraction of light

     

    11. Interference

    11.1 Explain the Phenomenon of Interferences

    11.2 Understand the meaning of coherent sources

    11.3 Describe Young’s double slit experiment and obtain the expression from nth order maxima

     

    12. Diffraction

    12.1 Describe diffraction at a single slit

    12.2 Understand diffraction pattern of image and derive the expression for the position of nth order minima

    12.3 Explain diffraction through transmission/diffraction grating and use the formula d sinqn = nl for maxima

    12.4 Explain resolving power of optical instruments

     

    13. Polarization

    13.1 Describe phenomenon of polarization

    13.2 Explain how polarization of light explains the transverse nature of light

    13.3 State and use Brewster’s law

    13.4 Show the understanding of construction, working principle and uses of Potentiometer for comparing emfs and measuring internal resistance of cells

     

    Content Area: Electricity and Magnetism

    14. Electrical circuits

    14.1 Understand Kirchhoff’s law as well as use it to calculate unknown parameters in electrical circuits

    14.2 Describe the circuit diagram and working of Wheatstone bridge circuit and understand its importance in real situation

    14.3 Describe Meter bridge and understand it

    14.4 Know construction, working and importance of Potentiometer

    14.5 Understand the concept of super conductors

    14.6 Know the meaning of perfect conductors and distinguish it from superconductor

    14.7 Learn the technique to convert galvanometer into voltmeter and ammeter

     

    15. Thermoelectric effects

    15.1 Explain Seebeck effect and its application in Thermocouples

    15.2 Show understanding of the construction and working principle of thermocouple as a temperature measuring device

    15.3 Explain Peltier effect

    15.4 Understand the construction and working of Thermopile

     

    16. Magnetic field

    16.1 Show understanding of the concept of magnetic field lines and magnetic flux and sketch magnetic field lines around a straight current carrying conductor and long solenoid

    16.2 Explain Oersted’s experiment, its outcome and limitations

    16.3 Discuss force on moving charge in uniform magnetic field

    16.4 Discuss force on a current carrying conductor placed in uniform magnetic field

    16.5 Describe force and Torque on rectangular coil placed in uniform magnetic field

    16.6 Describe moving coil galvanometer and know its applications

    16.7 Explain Hall effect and derive the expression VH=BI/ntq where t is thickness

    16.8 Use Hall probe to measure flux density of a uniform magnetic field

    16.9 State Biot and Savart law and know its application on (i) a circular coil (ii) a long straight conductor (iii) a long solenoid 16.10 State Ampere’s law and know its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid 16.11 Discuss force between two parallel conductors carrying current- definition of ampere

     

     

    17. Magnetic properties of materials:

    17.1 Define relative permeability and relative susceptibility of a magnetic material

    17.2 Discuss relationship between relative permeability and susceptibility

    17.3 Discuss Hysteresis of ferromagnetism

    17.4 Understand Dia,-para- and ferromagnetic materials

     

    18. Electromagnetic Induction

    18.1 State and show understanding of Faraday’s law of electromagnetic induction

    18.2 State and show understanding of Lenz’s law

    18.3 Discuss construction and working of A.C. generators

    18.4 Define eddy currents, explain how they arise and give a few examples where eddy currents are useful and where they are nuisance

    18.5 Describe self-inductance and mutual inductance and understand their uses

    18.6 State the expression for energy stored in an inductor and use it wherever needed

    18.7 Discuss the construction, working principle and importance of transformer

    18.8 Discuss the sources of energy loss in practical transformer

     

    19. Alternating Currents

    19.1 Understand peak and rms value of AC current and voltage

    19.2 Discuss AC through a resistor, a capacitor and an inductor

    19.3 Understand Phasor diagram in RC and RL circuits

    19.4 Discuss series circuits containing combination of resistance, capacitance and inductance

    19.5 Describe series resonance condition and know its applications

    19.6 Understand the meaning of quality factor

    19.7 Discuss power in AC circuits and know the term power factor

     

     

    Content Area: Modern Physics

     

    20. Electrons

    20.1 Describe Millikan’s oil drop experiment and explain how it suggests quantization of charge

    20.2 Describe the motion of electrons in electric and magnetic fields and derive appropriate mathematical expressions

    20.3 Describe JJ Thomson’s experiment with suitable diagrams to explain the discovery of electron and its characters

    20.4 Solve numerical problems related to above topics

     

    21. Photons

    21.1 Describe quantum nature of radiation

    21.2 Explain properties of photons

    21.3 Describe work function and photoelectric effect

    21.4 Derive Einstein’s photoelectric equation

    21.5 Describe Millikan’s experiment for the verification of Einstein’s photoelectric equation and calculate Planck’s constant

    21.6 Solve some related problems

     

    22. Semiconductor devices

    22.1 Describe the formation of PN junction and semiconductor diode

    22.2 Plot forward and reverse characteristics of semiconductor diode including the concept of Zener diode

    22.3 Define rectifier

    22.4 Describe full wave rectification using semiconductor diodes

    22.5 Define logic gates and explain operation of different logic gates OR, AND, NOT, NAND and NOR gates with their symbol , Boolean algebra and truth table

     

    23. Quantization of energy

    23.1 Write the postulates of Bohr’s model

    23.2 Derive the expression of radius of nth orbit, velocity of electron in nth orbit and total energy of electron in nth orbit of H-atom

    23.3 Obtain the expression of wavelength of a spectral line

    23.4 Obtain mathematical expressions different spectral series of H-atom

    23.5 Differentiate excitation and ionization potentials

    23.6 Explain emission and absorption spectra

    23.7 Describe de Broglie hypothesis

    23.8 Define x-rays

    23.9 Describe modern Coolidge tube method for the production of x-rays with quality and quantity

    23.10 Illustrate different properties of x-rays along with their applications

    23.11 Solve numerical problems related to quantization of energy

     

    24. Radioactivity and nuclear reaction

    24.1 Explain the meaning of Radioactivity – natural and artificial

    24.2 Differentiate types of radiations coming from radioactive sources – alpha, beta particles and gamma rays and state their properties

    24.3 Explain radioactive disintegration law

    24.4 Obtain the expressions of half-life, decay constant and mean life

    24.5 Explain the working of Geiger-Muller Tube

    24.6 Analyze some medical uses and health hazard of nuclear radiation

    24.7 Work out some related numerical problems

    24.8 Reason conceptual questions

     

    25. Recent trends in physics

    25.1 Seismology a. Briefly explain the origin of earthquakes b. Explain different types of surface waves: Rayleigh and Love waves c. Explain different types of internal waves: S and P-waves d. Give brief introduction to the wave patterns of Gorkha Earthquake 2015

    25.2 Demonstrate basic ideas on a. Gravitational Wave b. Nanotechnology c. Higgs Boson

     

     

     

    4. Scope and Sequence of Contents

    Content Area: Mechanics

    1. Rotational dynamics TH7

    1.1 Equation of angular motion, Relation between linear and angular kinematics

    1.2 Kinetic energy of rotation of rigid body

    1.3 Moment of inertia; Radius of gyration

    1.4 Moment of inertia of a uniform rod

    1.5 Torque and angular acceleration for a rigid body

    1.6 Work and power in rotational motion

    1.7 Angular momentum, conservation of angular momentum.

     

    2. Periodic motion TH6

    2.1 Equation of simple harmonic motion (SHM)

    2.2 Energy in SHM

    2.3 Application of SHM: vertical oscillation of mass suspended from coiled spring

    2.4 Angular SHM, simple pendulum

    2.5 Oscillatory motion: Damped oscillation, Forced oscillation and resonance.

     

    3. Fluid statics TH9

    3.1 Fluid statics: Pressure in a fluid; Buoyancy

    3.2 Surface tension: Theory of surface tension; Surface energy

    3.3 Angle of contact, capillarity and its applications

    3.4 Fluid Dynamics: Newton’s formula for viscosity in a liquid; Coefficient of viscosity

    3.5 Poiseuille’s formula and its application

    3.6 Stokes law and its applications

    3.7 Equation of continuity and its applications

    3.8 Bernoulli’s equation and its applications.

    Content Area: Heat and Thermodynamics

    4. First Law of Thermodynamics TH6

    4.1 Thermodynamic systems

    4.2 Work done during volume change

    4.3 Heat and work; Internal energy and First law of thermodynamics

    4.4 Thermodynamic processes: Adiabatic, isochoric, isothermal and isobaric

    4.5 Heat capacities of an ideal gas at constant pressure and volume and relation between them

    4.6 Isothermal and Adiabatic processes for an ideal gas.

     

    5. Second Law of Thermodynamics TH6

    5.1 Thermodynamic systems and direction of thermodynamic processes

    5.2 Second law of thermodynamics

    5.3 Heat engines

    5.4 Internal combustion engines: Otto cycle, Diesel cycle; Carnot cycle

    5.5 Refrigerator

    5.6 Entropy and disorder (introduction only)

     

    Content Area: Waves & Optics

    6. Wave motion TH2

    6.1 Progressive waves

    6.2 Mathematical description of a wave

    6.3 Stationary waves

     

    7. Mechanical waves TH4

    7.1 Speed of wave motion; Velocity of sound in solid and liquid

    7.2 Velocity of sound in gas

    7.3 Laplace’s correction

    7.4 Effect of temperature, pressure, humidity on velocity of sound.

     

    8. Wave in pipes and strings TH4

    8.1 Stationary waves in closed and open pipes

    8.2 Harmonics and overtones in closed and open organ pipes

    8.3 End correction in pipes

    8.4 Velocity of transverse waves along a stretched string

    8.5 Vibration of string and overtones 8.6 Laws of vibration of fixed string.

     

    9. Acoustic phenomena TH5

    9.1 Sound waves: Pressure amplitude

    9.2 Characteristics of sound: Intensity; loudness, quality and pitch

    9.3 Doppler’s effect.

     

    10. Nature and propagation of light TH3

    10.1 Huygen’s principle

    10.2 Reflection and Refraction according to wave theory

     

    11. Interference TH2

    11.1 Phenomenon of Interferences: Coherent sources

    11.2 Young’s double slit experiment.

     

    12. Diffraction TH3

    12.1 Diffraction from a single slit

    12.2 Diffraction pattern of image; Diffraction grating

    12.3 Resolving power of optical instruments.

     

    13. Polarization TH3

    13.1 Phenomenon of polarization

    13.2 Brewster’s law; transverse nature of light

    13.3 Polaroid.

    Content Area: Electricity & Magnetism

     

    14. Electrical circuits TH6

    14.1 Kirchhoff’s law

    14.2 Wheatstone bridge circuit; Meter bridge

    14.3 Potentiometer: Comparison of e.m.f., measurement of internal resistances of a cell

    14.4 Super conductors; Perfect conductors

    14.5 Conversion of galvanometer into voltmeter and ammeter; Ohmmeter

    14.6 Joule’s law

     

    15. Thermoelectric effects TH3

    15.1 Seebeck effect; Thermocouples

    15.2 Peltier effect: Variation of thermoelectric e.m.f. with temperature; Thermopile

     

    16. Magnetic field  TH9

    16.1 Magnetic field lines and magnetic flux; Oersted’s experiment

    16.2 Force on moving charge; Force on a conductor

    16.3 Force and Torque on rectangular coil, Moving coil galvanometer

    16.4 Hall effect 16.5 Magnetic field of a moving charge

    16.6 Biot and Savart law and its application to (i) a circular coil (ii) a long straight conductor (iii) a long solenoid

    16.7 Ampere’s law and its applications to (i) a long straight conductor (ii) a straight solenoid (ii) a toroidal solenoid

    16.8 Force between two parallel conductors carrying current- definition of ampere

     

    17. Magnetic properties of materials TH5

    17.1 Magnetic field lines and magnetic flux

    17.2 Flux density in magnetic material; Relative permeability; Susceptibility

    17.3 Hysteresis

    17.4 Dia,-para- and ferro-magnetic

     

    18. Electromagnetic Induction TH6

    18.1 Faraday’s laws; Induced electric fields

    18.2 Lenz’s law, Motional electromotive force

    18.3 A.C. generators; Eddy currents

    18.4 Self-inductance and mutual inductance

    18.5 Energy stored in an inductor

    18.6 Transformer.

     

    19. Alternating Currents TH6

    19.1 Peak and rms value of AC current and voltage

    19.2 AC through a resistor, a capacitor and an inductor 19.3 Phasor diagram

    19.4 Series circuits containing combination of resistance, capacitance and inductance

    19.5 Series resonance, quality factor

    19.6 Power in AC circuits: power factor

     

    Content Area: Modern Physics

    20. Electrons TH4

    20.1 Milikan’s oil drop experiment,

    20.2 Motion of electron beam in electric and magnetic fields

    20.3 Thomson’s experiment to determine specific charge of electrons

     

    21. Photons TH3

    21.1 Quantum nature of radiation 21.2 Einstein’s photoelectric equation; Stopping potential 21.3 Measurement of Plank’s constant

     

    22. Semiconductor devices TH6

    22.1 P-N Junction

    22.2 Semiconductor diode: Characteristics in forward and reverse bias

    22.3 Full wave rectification

    22.4 Logic gates; NOT, OR, AND, NAND and NOR.

     

    23. Quantization of energy TH8

    23.1 Bohr’s theory of hydrogen atom

    23.2 Spectral series; Excitation and ionization potentials

    23.3 Energy level; Emission and absorption spectra

    23.4 De Broglie Theory; Duality

    23.5 Uncertainly principle

    23.6 X-rays: Nature and production; uses

    23.7 X-rays diffraction, Bragg’s law

     

    24. Radioactivity and nuclear reaction TH6

    24.1 Alpha-particles; Beta-particles, Gamma rays

    24.2 Laws of radioactive disintegration

    24.3 Half-life, mean-life and decay constant

    24.4 Geiger-Muller Tube

    24.5 Carbon dating

    24.6 Medical use of nuclear radiation and possible health hazard.

     

    25. Recent trends in physics Seismology TH6

    25.1 Surface waves: Rayleigh and Love waves Internal waves: S and P-waves Wave patterns of Gorkha Earthquake 2015

    25.2 Gravitational Wave Nanotechnology Higgs Boson

     

     

    #####

    Click on link for YouTube videos

    Share (Accounting for Share)

    http://tiny.cc/889jkz

    Share in Nepali

    http://tiny.cc/k99jkz

    Debentures

    http://tiny.cc/yeakkz

    Final Account: Class 12

    http://tiny.cc/e89jkz

    Final Account in Nepali

    http://tiny.cc/w89jkz

    Work Sheet

    http://tiny.cc/579jkz

    Ratio Analysis (Accounting Ratio)

    http://tiny.cc/4fakkz

    Fund Flow Statement

    http://tiny.cc/wiakkz

    Cash Flow Statement

    http://tiny.cc/8gakkz

    Theory Accounting Xii

    http://tiny.cc/nfakkz

    Theory: Cost Accounting

    http://tiny.cc/tfakkz

    Cost Accounting

    http://tiny.cc/p29jkz

    LIFO−FIFO

    http://tiny.cc/dgakkz

    Cost Sheet, Unit Costing

    http://tiny.cc/w49jkz

    Cost Reconciliation Statement

    http://tiny.cc/829jkz

    #####

     

     

    Click on the photo for FREE eBooks

     

     

    5. Practical Courses [32 Hours]

    The practical work that students do during their course is aimed at providing them learning opportunities to accomplish competency number 2 and 3 of the syllabus as well as reinforcing their learning of the theoretical subject content. This part of the syllabus focuses more on skill building than knowledge building. Students must be aware of the importance of precision, accuracy, significant figures, range and errors while collecting, processing, analyzing and communicating data. Likewise, graphical method of analysis and drawing conclusion should be encouraged wherever possible.

     

    Students should

    1. Learn to use metre rule for measuring length, Vernier-calipers for measuring small thicknesses, internal and external diameters of cylindrical objects and depths of holes, spherometer for measuring radius of curvature of spherical surfaces and micrometer screw-gauge for measuring diameter of small spherical or cylindrical objects and very small thicknesses, traveling microscope with Vernier scale for measuring small distances, top-pan balance for measuring small masses, stop watch for measuring time interval, laboratory thermometer for measuring temperature, protractor for measuring angle), ammeter and milli-ammeter for measuring electric current and voltmeter for measuring electric potential difference.

     

    2. Learn to measure precisely up to the least count of the measuring instrument

    metre rule                                        0.001m or 1 mm

    Vernier calipers                              0.1 mm

    Spherometer                                   0.01 mm

    micrometer screw gauge              0.01 mm

    stop watch                                       0.01s

    laboratory thermometer – 0.5° C protractor – 1°

     

    3. Learn to repeat readings and take the average value

    4. Learn to draw a standard table, with appropriate heading and unit for every column for storing data

    5. Learn to plot a graph using standard format, draw suitable trend lines, determine gradient, intercepts and area and use them to draw appropriate conclusion

    6. Learn to estimate and handle uncertainties.

    In each academic year, students should perform 10 experiments, either listed below or designed by teacher, so that no more than three experiments come from the same unit of this syllabus.

     

    (d) Practical Activities for Grade 12

    Mechanics

    1. Use of Simple pendulum for the determination of the value of ‘g’ in the laboratory by graphically analyzing the variation of period of oscillations with length of the pendulum.

     

    2. Determination of the surface tension of water by capillary tube method by graphically analyzing the variation of by graphically analyzing the variation of height of the liquid against the diameter of capillary tube for five capillaries of different diameters dipped in water simultaneously.

     

    3. Determination of the coefficient of viscosity of liquid by Stoke’s method by graphically analyzing the variation of time taken for six metal balls of different diameters to travel the same distance in the given liquid with respect to their diameters.

     

    Wave and Optics

    4. Determination of the wavelength of He-Ne laser light by passing a plane diffraction grating.

     

    5. Determination of the frequency of A.C. Mains using sonometer and graphically analyzing the variation of the ratio of resonating lengths with respect to the frequency of tuning fork using tuning forks of different frequencies.

     

    6. Determination of velocity of sound in air at NTP using resonance tube.

    Electricity and magnetism

    7. Use of potentiometer for the a) Comparison of emf’s of two cells b) Determination of the internal resistance of a cell

     

    8. Study the variation or resistance of a thermistor with temperature.

    (i) Use of deflection magnetometer to determination of the pole strength and magnetic moment of a bar magnet

    (ii) Determine the magnetic field strength of a bar magnet stuck on table by graphically analyzing the period of torsional motion of a freely suspended bar magnet and its distance from the near pole of the fixed magnet along its long axis.

     

    Modern Physics

    11. Study the I-V characteristics of a semiconductor diode.

     

    (e) Sample project works for grade 12

    1. Study the traffic noise level in your town using a sound pressure level (SPL) meter.

    2. Design and construct a step-up transformer.

    3. Construct a simple device to measure angle of contact of a liquid with a solid surface and also calculate the surface free energy of some hydrophobic and hydrophilic surfaces.

    4. Calculate the surface free energy of some hydrophobic and hydrophilic surfaces.

    5. Construct a simple DC motor using a disk type magnet and a battery.

    6. Construct a model of AC generator/dynamo.

    7. Construct a current balance to measure magnetic flux density of a U-shaped magnet.

    8. Construction of a step down transformer attached with a full wave rectifier made from semiconductor diodes.

     

     

    (f) Some examples of innovative works for grade 12

    1. Construct a thermocouple thermometer and use it to investigate how temperature of a Bunsen burner flame changes with the height of the flame from the top of the burner.

    2. Study of the status of hydroelectricity in Nepal.

    3. Study of application of laws and principle of physics in any indigenous technology.

    4. Verify Joule’ law.

    5. Investigation on Peltier effect.

    6. History of space exploration

    7. Study on history of nuclear power in Asia

     

    6. Learning Facilitation Method and Process

    Students should be facilitated to learn rather than just accumulation of information. Teacher plays vital role for delivering subject matters although others’ role is also important. Student centered teaching-learning process is highly emphasized. Students are supposed to adopt multiple pathway of learning, such as online search, field visit, library work, laboratory work, individual and group work, research work etc. with the support of teacher. Self-study by students is highly encouraged and learning should not be confined to the scope of curriculum. Teacher should keep in mind intra and inter-disciplinary approach to teaching and learning, as opposed to compartmentalization of knowledge. Supportive role of parents/guardians in creating conducive environment for promoting the spirit of inquiry and creativity in students’ learning i anticipated.

     

    During the delivery process of science teaching in grade 11 and 12, basically following three approaches will be adopted;

     

    Conceptual/Theoretical

    Practical/Application/Experiment

    Project works

    Knowledge of contents (fact, terminology, definitions, procedures, understanding of contents (concept, ideas, theories, principles)

    Lab based practical work.

    Science process and equipment handling skill building

     

    Research work (survey and mini research)

    Innovative work or experiential learning connection to theory and application.

    3.5 credit hours spent for understanding of content

    1 credit hour spent for experiment

    0.5 credit hour spent in the field work

     

    (A) Conceptual/Theoretical Approach

    Possible theoretical methods of delivery may include the following;

    a. lecture

    b. interaction

    c. question answer

    d. demonstrations

    e. ICT based instructions

    f. cooperative learning

    g. group discussions (satellite learning group, peer group, small and large group)

    h. debate

    i. seminar presentation

    j. Journal publishing

    k. daily assignment

     

    (B) Practical/Application/Experimental approach

    Practical work is the integral part of the learning science. The process of lab based practical work comprises as;

    (a) familiarity with objective of practical work

    (b) familiarity with materials, chemicals, apparatus

    (c) familiarity with lab process (safety, working modality etc.)

    (d) conduction of practical work (systematically following the given instruction)

    (e) analysis, interpretation and drawing conclusion

     

    (C) Project work Approach

    Project work is an integral part of the science learning. Students should be involved in project work to foster self-learning of students in the both theoretical and practical contents. Students will complete project work to have practical idea through learning by doing approach and able to connect the theory into the real world context. It is regarded as method/ process of learning rather than content itself. So use of project work method to facilitate any appropriate contents of this curriculum is highly encouraged. In this approach student will conduct at least one research work, or an innovative work under the guidance of teacher, using the knowledge and skills learnt. It could include any of the followings;

    (a) Mini research

    (b) Survey

    (c) Model construction

    (d) Paper based work

    (e) Study of ethno-science

     

    General process of research work embraces the following steps;

    (a) Understanding the objective of the research

    (b) Planning and designing

    (c) Collecting information

    (d) Analysis and interpretation

    (e) Reporting /communicating (presentation, via visual aids, written report, graphical etc.)

     

    General process of innovative work embraces the following steps;

    (a) Identification of innovative task (either assigned by teacher or proposed by student)

    (b) Planning

    (c) Performing the task

    d) Presentation of the work

    (e) Record keeping of the work

     

    Students are free to choose any topic listed in this curriculum or a topic suggested by teacher provided that it is within the theoretical contents of the Curriculum. However, repetition of topic should be discouraged.

     

    Learning process matrix

    Knowledge and understanding

    Scientific skills and process

    Values, attitudes and application to daily life

    Scientific phenomenon, facts, definition, principles, theory, concepts and new discoveries

    Basic and integrated scientific process skills

    Responsible

    Scientific vocabulary, glossary and terminology

    Process:

    Investigation

    Creative thinking

    problem solving

    Spending time for investigation

    Scientific tools, devises, instruments apparatus

     

     

    Techniques of uses of scientific instruments with safety

     

     

    Scientific and technological applications

     

     

     

    Basic Science Process Skills includes:

    1. Observing: using senses to gather information about an object or event. It is description of what was actually perceived.

    2. Measuring: comparing unknown physical quantity with known quantity (standard unit) of same type.

    3. Inferring: formulating assumptions or possible explanations based upon observations.

    4. Classifying: grouping or ordering objects or events into categories based upon characteristics or defined criteria.

    5. Predicting: guessing the most likely outcome of a future event based upon a pattern of evidence.

    6. Communicating: using words, symbols, or graphics to describe an object, action or event.

     

     

    Integrated Science Process Skills includes:

    1. Formulating hypotheses: determination of the proposed solutions or expected outcomes for experiments. These proposed solutions to a problem must be testable.

    2. Identifying of variables: Identification of the changeable factors (independent and dependent variables) that can affect an experiment.

    3. Defining variables operationally: explaining how to measure a variable in an experiment.

    4. Describing relationships between variables: explaining relationships between variables in an experiment such as between the independent and dependent variables.

    5. Designing investigations: designing an experiment by identifying materials and describing appropriate steps in a procedure to test a hypothesis.

    Experimenting: carrying out an experiment by carefully following directions of the procedure so the results can be verified by repeating the procedure several times.

    7. Acquiring data: collecting qualitative and quantitative data as observations and measurements.

    8. Organizing data in tables and graphs: presenting collected data in tables and graphs.

    9. Analyzing investigations and their data: interpreting data, identifying errors, evaluating the hypothesis, formulating conclusions, and recommending further testing where necessary.

    10. Understanding cause and effect relationships: understanding what caused what to happen and why.

    11. Formulating models: recognizing patterns in data and making comparisons to familiar objects or ideas.

     

    7. Student Assessment

    Evaluation is an integral part of learning process. Both formative and summative modes of evaluation are emphasized. Formative evaluation will be conducted so as to provide regular feedback for students, teachers and parents/guardians about how student learning is. Class tests, unit tests, oral question-answer, home assignment etc, are some ways of formative evaluation.

     

    There will be separate evaluation of theoretical and practical learning. Summative evaluation embraces theoretical examination, practical examination and evaluation of research work or innovative work.

     

    (a) Internal Evaluation

    Out of 100 full marks internal evaluation covers 25 marks.

    (a) Internal evaluation consists of Practical work (16 marks),

    (b) Marks from trimester examinations (6 marks), and

    (c) Classroom participation (3 marks)

     

    Practical Activities

    Practical works and project works should be based on list of activities mentioned in this curriculum or designed by teacher. Mark distribution for practical work and project work will be as follows:

    SN

    Criteria

    Elaboration of criteria

    Marks

    1

    Laboratory experiment

    Correctness of apparatus setup/preparation

    2

     

     

    Observation/Experimentation

    2

     

     

    Tabulation

    1

     

     

    Data processing and Analysis

    1

     

     

    Conclusion (Value of constants or prediction with justification)

    1

     

     

    Handling of errors/precaution

    1

    2

    Viva-voce

    Understanding of objective of the experiment

    1

     

     

    Skills of the handling of apparatus in use

    1

     

     

    Overall impression

    1

    3

    Practical work records and attendance

    Records (number and quality)

    2

    4

    Project work

    Reports (background, objective, methodology, finding, conclusion

    2

     

     

    Presentation

    1

     

    Total

     

    16

     

    Note:

    (i) Practical examination will be conducted in the presence of internal and external supervisors. Evaluation of laboratory experiment will focus both the product of work and skills competencies of student in using apparatus.

    (ii) Project work assessment is the internal assessment of reports and presentation of their project works either individually or group basis. In case of group presentation, every member of the group should submit a short reflection on the presented report in their own language. Records of project works must be attested by external supervisor.

     

    · Marks from trimester examinations

    Total of 6 marks; 3 marks from each trimester

     

    · Classroom participation 3 marks [classroom participation includes attendance 1 mark and participation in learning 2 marks]

     

    (b) External Evaluation

    Out of 100 marks theoretical evaluation covers 75 marks. The tool for external evaluation of theoretical learning will be a written examination. Questions for the external examination will be based on the specification grid developed by Curriculum Development Centre. Examination question paper will be developed using various levels of revised Bloom’s taxonomy including remembering level, understanding level, application level and higher ability (such as analyzing, evaluating, creating).

     

    Physics Model Question, Grade 12

    coming soon

     

    ***** #EPOnlineStudy *****

    Thank you for investing your time.

    Please comment on the article.

    You can help us by sharing this post on your social media platform.

     

    Jay Google, Jay YouTube, Jay Social Media

    जय गूगल. जय युट्युब, जय सोशल मीडिया

     

     

    Comments
    • Facebook
    • Email

    Comment box closed

    You might also like

    Income Statement under NFRS | Balance Sheet under NFRS | P&S 1

    Balance Sheet under NFRS | Statement of Financial Position under NFRS | Solution

    Income Statement under NFRS | Profit or Loss Statement under NFRS | SOLUTION

    Income Statement under NFRS | Balance Sheet under NFRS | EXPLANATION

    Financial Statement under NFRS| Classification of Accounting Standards

    Swar | Vyanjak | A Aa I Ee | Ka Kha Ga Gha | Ka Kaa Ki Kee | Barahkhadi | Kra Khra Gra

    ABCD | British Phonetic ABCD | American Phonetic ABCD | ABCD in Devanagari

    The Half-closed Eyes of the Buddha and the Slowly Sinking Sun | All Solution | NEB English Class 12 | Short Story Q&A







    Follow us on
  • Pages

    • Home
    • About us
    • Advertise
    • Contact
    • Conversion
    • Date Converter
    • Dictionary
    • Draft Posts
    • EMI Calculator
    • Forex Exchange
    • Forum
    • Forum
    • Gold & Silver
    • My Posts
    • Our Team
    • Pending Posts
    • Preeti to Unicode
    • Privacy Policy
    • School Level Books
    • Term & Condition
    • Unicode to Preeti
    • WP File download search

    News

    • Economic News
    • Political News
    • Social News
    • Sports News
    • Viral News

    Books

    • SCHOOL LEVEL BOOKS
    • 10+2 or INTERMEDIATE BOOKS
    • GRADUATION LEVEL BOOKS

    Dictionary

    • Accounting Dictionary
    • English Hindi Dictionary
    • Hindi English Dictionary

    Conversion

    • EMI Calculator
    • Date Converter
    • Forex Exchange
    • Preeti to Unicode
    • Unicode to Preeti
    © 2020 - EP Online Study Designed by: GOJI Solution